Mim sản xuất phụ gia

Mục lục

mim additive manufacturing refers to an industrial process to produce small, complex metal parts at high volumes. A composite metal powder feedstock is molded into a green-state shape using injection molding equipment, debound, and then sintered to achieve full density.

MIM leverages the geometric flexibility of polymer injection molding and green-forming with the performance capability of metal alloys. With additive manufacturing processes expanding options, this guide covers MIM compositions, properties, applications, specifications, process flows, suppliers, tradeoffs, and FAQs.

mim additive manufacturing

Composition of MIM Alloys

Many compositions are available as MIM feedstocks:

Vật liệuCommon AlloysTổng quan
Thép không gỉ316L, 17-4PH, 420Corrosion resistant, high hardness, for medical uses
Thép công cụH13, P20High strength, heat resistance, for molded tooling
Aluminum alloy2024, 6061, 7075Lightweight, high strength-to-weight ratio
Titanium alloyBạn-shal-hvLightweight with corrosion resistance and high strength for aerospace uses
Nickel alloyInconel 625 and 718Heat/corrosion resistance suited for turbo machinery
VonframWHA, WCExtremely high density perfect for balancing applications

Both standard and custom formulations are available depending on needs.

Properties of mim additive manufacturing

In addition to composition tailored to performance requirements, key resulting properties include:

Tài sảnSự miêu tả
Tỉ trọngRanges from near pure metal density to greater than 95% theoretical density
Sức căng250 MPa to over 1300 MPa depending on reinforcement strategies
Độ cứngUp to 70 HRC achieved based on alloy choice
Chống ăn mònVarying resistance levels possible based on compositions selected
Độ nhám bề mặtAs molded <6 μm Ra up to <0.2 μm Ra after plating/polishing
Complex geometryMolding allows intricate shapes unachievable with other processes
Feature resolutionSmall slots, holes, threads down to ~100 μm » achievable
Wall thicknessAs low as ~0.25 mm walls molded based on geometry
TolerancesTighter tolerances than metal AM, typical ±0.3% of dimensions

These capabilities make MIM suitable for end-use precision components.

Applications of MIM Additive Manufacturing

MIM’s geometric flexibility and tailored composition suit various industries:

Ngành công nghiệpComponent Examples
Ô tôGears, rocker arms, turbocharger components
Không gian vũ trụTurbine blades, impellers, nozzle guide vanes
FirearmsTriggers, safeties, slides, ejectors, muzzles
Medical/DentalScalpel handles, forceps, skull plates, crowns
Dầu và khíValve parts including bodies, stems, actuators
Micro ElectronicsShields, connectors, pins, spacers, actuators

MIM also helps create tooling inserts capable of mass production molding/forming operations.

MIM Feedstock Specifications

Feedstock properties require careful control for tolerance and feature capability:

Tham sốTypical SpecificationPhương pháp kiểm tra
Powder particle size3 – 20 μmNhiễu xạ laser
Powder loading>55 vol%Phân tích nhiệt lượng
Powder apparent density2.5 – 4 g/cm3Hall Flowmeter
Chạm vào mật độ>4 g/cm3Tapping volumeter
Viscosity curveShear rate dependentCapillary rheometry
Pellet size distribution2 – 4 g sensitive to shapeSàng

These specifications promote mold flow while ensuring green-body and sintered strength.

Overview of the MIM Manufacturing Process

  1. Develop composite feedstock with desired powder + binder system
  2. Pelletize feedstock for precision volumetric shot control
  3. Injection mold parts with tight tolerances and surface finish
  4. Chemically debind and remove polymer content
  5. Sinter pellets at >92% theoretical density
  6. Machine features as needed if geometry allows
  7. Apply supplementary plating, heat treating, coating, etc. if necessary
  8. Quality assurance testing and validation for production

This continues to be optimized for reliability at high volumes.

MIM Equipment and Feedstock Suppliers

Công tyNguyên vật liệuKhả năng
BASFWide range of MIM alloysComplete quality feedstocks
Sandvik Osprey316L, 17-4PH, moreAtomization expertise transferred to MIM
MPPTool steels, stainless steels, customLeading MIM equipment too
CN InnovationsCustom alloysSpecialists in novel compositions
Parmatech CorpTi alloys, tool steels, Fe alloys, exoticsEquipment and feedstocks

Suppliers offer complementary equipment like molding machines and furnaces to enable turnkey production.

Tradeoffs When Considering MIM AM

Pros:

  • Highly complex geometries and assemblies consolidated
  • Excellent mechanical properties from uniform fine grains
  • Great surface finish resolution as molded
  • Proven mass production scalability once qualified
  • Low wasted raw material relative to metal printing
  • Leverages existing injection molding know-how

Cons:

  • High up front costs for feedstock formulation and tooling
  • Intensive qualification for new parts and applications
  • Limited size range to under several pounds
  • Restricted to alloys available as powders
  • Generally lower ultimate strength than forgings
  • Per-part cost higher than other processes until >10k volume

MIM hits the sweet spot for small complex metal components with its established track record.

mim additive manufacturing

Các câu hỏi thường gặp

How small of features can MIM practically mold?

Typical lower range limits fall around 100-150 microns for hole diameter and mold wall thicknesses around 0.3 mm (~12 thou), thinner in certain geometries.

What determines the size range limits for MIM parts?

General difficulty handling thin-walled shapes over approximately 5” flow length without sagging or distortion. Maximum thickness typically under 0.5” and weights up to 5 pound range.

Does MIM allow functionally graded (FGM) composites?

Yes, advanced molding processes now support tailored porosities or spatially graded multi-powder feedstocks within a single molded component during manufacturing.

How many alloys are commercially available as MIM feedstocks?

Over 60+ base formulations exist – 300 series stainless steels comprise over 50% of the total market, followed by tool steels, titanium alloys, and nickel superalloys seeing growth.

What finishing processes typically follow MIM?

Common secondary operations include barrel finishing/vibratory deburring, surface grinding, shot peening, laser marking, passivation, plating, heat treating, joining, and inspection.

biết thêm quy trình in 3D

Chia sẻ

Facebook
Twitter
LinkedIn
WhatsApp
E-mail

Metal3DP Technology Co., Ltd là nhà cung cấp hàng đầu các giải pháp sản xuất phụ gia có trụ sở tại Qingdao, Trung Quốc. Công ty chúng tôi chuyên về thiết bị in 3D và bột kim loại hiệu suất cao cho các ứng dụng công nghiệp.

Yêu cầu để có được giá tốt nhất và giải pháp tùy chỉnh cho doanh nghiệp của bạn!

Những bài viết liên quan

Molybdenum Powder: Discover Its Powerful Role in Modern Technology

Molybdenum powder might not be the first material that comes to mind when thinking of industrial applications, but it’s one of the most critical elements in industries ranging from aerospace to electronics. Known for its high melting point, strength, and corrosion resistance, molybdenum powder has become an indispensable part of modern technology.

In this comprehensive guide, we’ll explore molybdenum powder from every angle. Whether you’re a material scientist, an engineer, or someone simply curious about this fascinating material, this article will provide a deep dive into molybdenum powder’s properties, applications, and advantages.

Đọc thêm & GT;

Spherical Tungsten Carbide-Cobalt Powder Explained: Enhance Your Manufacturing Efficiency

In the world of advanced materials, spherical tungsten carbide-cobalt powder (WC-Co) stands out as a high-performance material with exceptional hardness, wear resistance, and thermal stability. This material is indispensable in industries like aerospace, automotive, mining, and oil and gas due to its ability to withstand extreme conditions while maintaining its structural integrity. But what exactly is spherical tungsten carbide-cobalt powder? How does it compare to other powders, and what makes it such a crucial material in modern manufacturing?

In this comprehensive guide, we will dive deep into the properties, applications, pricing, pros and cons, and much more about spherical tungsten carbide-cobalt powder. Whether you are a materials engineer, a product designer, or simply a curious reader, this article will provide you with all the information you need.

Đọc thêm & GT;

Nhận Metal3DP's
Tài liệu sản phẩm

Nhận các tin tức mới nhất, đổi mới và tin tức của công ty.