ทำความเข้าใจกับการผลิต SLM

สารบัญ

slm manufacturing is a powder bed fusion additive manufacturing process used across industries. This guide provides a comprehensive look at SLM – how it works, materials, applications, advantages/disadvantages, system suppliers, and more.

Overview of Selective Laser Melting (SLM)

slm manufacturing is an additive manufacturing process that uses a laser to selectively melt metal powder layer-by-layer to build up fully dense parts. Key attributes:

  • Uses 3D CAD data to direct laser melting of powder layers
  • Achieves near full density in most alloys (>99%)
  • Allows complex geometries not possible with casting/machining
  • Common materials include stainless steel, titanium, aluminum, nickel alloys
  • Typical layer thickness 20-100 microns

slm manufacturing provides design freedom and mechanical properties approaching traditional manufacturing.

slm manufacturing

How the slm manufacturing ผลงาน

SLM uses a high power laser to melt fine metallic powder in precise patterns:

  • CAD model is digitally sliced into thin cross-sectional layers
  • Powder layer is spread evenly across the build platform
  • Laser melts powder based on each slice, fusing particles together
  • Platform lowers, new layer applied, and process repeats
  • Fully dense parts are built up additively layer-by-layer

A protective inert gas atmosphere prevents oxidation during builds.

Materials for SLM

Many metal powders can be used for SLM, including:

SLM Metallic Materials

  • Stainless steel (316L, 17-4PH, 15-5PH)
  • Tool steel (H13, M2)
  • Titanium (Ti-6Al-4V)
  • Aluminum (AlSi10Mg)
  • Cobalt-Chrome (CoCr)
  • Nickel alloys (Inconel 625, 718)
  • Copper alloys
  • Precious metals

Powders range from 15-45 microns typically. Some alloys require specialized parameters to print successfully.

Applications of SLM Parts

slm manufacturing allows consolidating assemblies into one-piece components with no assembly. Common uses include:

SLM Part Applications

  • Aerospace – lightweight structures, turbines, brackets
  • Medical – implants, prosthetics, surgical instruments
  • Automotive – lightweighted components, custom designs
  • Tooling – injection molds with conformal cooling
  • Energy – complex oil/gas valves, heat exchangers
  • Defense – custom drone/robotics parts needing strength

SLM enables optimized designs with reduced weight and lead times versus traditional manufacturing.

Advantages of SLM Additive Manufacturing

Key benefits that make SLM attractive:

  • Complex geometries and microstructures possible
  • Fully dense and isotropic material properties
  • Less waste – only use material required
  • Weight reduction by consolidating assemblies
  • Fast turnaround for design iterations
  • No need for special tooling like cast/forge dies
  • Custom alloys and graded materials achievable

slm manufacturing provides nearly unlimited freedom to produce enhanced components otherwise infeasible.

Limitations of slm manufacturing

SLM does have some disadvantages compared to conventional manufacturing:

  • Higher part cost for small production volumes
  • Limited size based on build chamber dimensions (improving over time)
  • Restricted material selection compared to cast or wrought alloys
  • Post-processing like surface finishing often required
  • Special handling of reactive powders like titanium and aluminum
  • Defects possible requiring inspection methods to identify
  • anisotropic properties in some materials and builds

Challenges are mitigated through ongoing technology advancements.

SLM System Suppliers

Major SLM equipment manufacturers include:

Notable SLM System Providers

  • EOS
  • ระบบ 3 มิติ
  • สารเติมแต่ง GE
  • Trumpf
  • Renishaw
  • DMG Mori
  • Sisma
  • Mazak
  • AMCM

Many provide turnkey systems plus powder handling and post-processing equipment.

Cost Analysis of slm manufacturing การผลิต

Like most AM processes, SLM has high upfront costs but low per-part costs at volume:

  • SLM system cost ~$500,000 to $1M+
  • Build rate ~5-20 cm3/hour (~10-50g/hour)
  • Labor time ~5-10 hrs including post-processing
  • Material cost ~$50-200/kg
  • Total part cost can be $500 to $5000+

Highest costs are labor, system investment, and materials. Competitive for small/medium volumes.

SLM vs. Metal Casting and Machining

กระบวนการข้อดีข้อเสียBest Applications
SLMDesign freedom, lightweight, fast turnaround, minimal wasteLimited size, higher cost at low volumes, post-processingLow and medium volume complex parts
Metal castingNear net shape, good for simple to complex parts, lower costs at volumeExtra steps to finish parts, design restrictions, tooling costsMedium to high production volumes
CNC machiningWide material choices, high accuracy, good surface finishWaste from subtractive process, higher costs at lower quantities, design limitations from tool accessLow to medium volumes where design changes frequently

Each process has advantages suited to specific applications, production volumes and goals.

slm manufacturing

คำถามที่พบบ่อย

What materials can be 3D printed with SLM?

The most common SLM materials are alloys of stainless steel, titanium, aluminum, cobalt-chrome, nickel, copper, and precious metals. Various tool steels and superalloys are also possible.

What is the typical accuracy of SLM parts?

SLM can produce parts with accuracy around +/- 0.005 in/in depending on factors like layer thickness, scan strategy, geometry and post-processing. Critical surfaces may need machining.

What kinds of post-processing are required for SLM parts?

Typical SLM post-processing includes supports removal, stress relieving, surface polishing/linishing, Hot Isostatic Pressing to eliminate internal voids, and heat treatments if needed.

Can SLM make functionally graded materials?

Yes, SLM can fabricate complex graded structures by intelligently varying the feedstock composition and microstructure at various locations in a build.

Is SLM suitable for mass manufacturing?

Currently SLM is most applicable for small to medium production volumes up to thousands of parts where the benefits of design flexibility and customized properties justify costs.

SLM enables breakthrough performance gains using additive techniques. As the technology matures, costs will become more competitive.

บทสรุป

Selective laser melting has revolutionized manufacturing across industries by enabling complex optimized geometries once impossible. It builds dense functional metal components from 3D model data by fusing powder layers with a focused laser. While costs are still higher for lower volumes, SLM provides unprecedented freedom to reimagine component designs for performance gains. Materials continuously expand from metals like titanium, aluminum, steel, nickel, and cobalt alloys. As the technology progresses, SLM will become viable for higher volume production, complementing conventional manufacturing where it provides advantages. SLM continues opening new possibilities for designers and engineers.

รู้กระบวนการพิมพ์ 3 มิติเพิ่มเติม

ร่วมกัน

Facebook
Twitter
LinkedIn
Whatsapp
อีเมล

Metal3DP Technology Co. , Ltd เป็นผู้ให้บริการชั้นนำของโซลูชั่นการผลิตสารเติมแต่งที่มีสำนักงานใหญ่ในชิงเต่าประเทศจีน บริษัท ของเรามีความเชี่ยวชาญในอุปกรณ์การพิมพ์ 3 มิติและผงโลหะประสิทธิภาพสูงสำหรับการใช้งานอุตสาหกรรม

สอบถามเพื่อรับราคาที่ดีที่สุดและโซลูชันที่กำหนดเองสำหรับธุรกิจของคุณ!

บทความที่เกี่ยวข้อง

The Ultimate Breakdown of Spherical Silver Powder Properties and Uses

When we think of silver, we often imagine shiny jewelry or sparkling coins. But in the world of advanced materials, spherical silver powder is gaining recognition for its unique properties that go far beyond aesthetics. Whether you’re involved in electronics, medical devices, additive manufacturing, or conductive inks, this material might just be what you need to take your projects to the next level.

In this comprehensive guide, we’ll explore everything you need to know about spherical silver powder: from its composition and properties to its applications, specifications, pricing, and suppliers. We’ll make sure to break down all the technical details into digestible sections, using tables for easy comparison, and we’ll wrap up with a detailed FAQ to answer any lingering questions.

อ่านเพิ่มเติม & gt;

Molybdenum-Based Powder: Elite Wear-Resistant Material for Industries

Molybdenum-based powders are a cornerstone in modern material science and engineering, offering exceptional strength, thermal stability, and corrosion resistance. If you’re looking for a material that can withstand extreme temperatures, resist wear, and support cutting-edge applications like additive manufacturing and thermal spraying, molybdenum-based powder is the answer.

But what makes molybdenum so special? Think of it as the quiet hero of industrial materials. Molybdenum, a refractory metal, has a high melting point (2,623°C), making it incredibly durable in extreme environments. When processed into powder form, this material becomes highly versatile, enabling its use in coatings, 3D printing, lubricants, and more. Molybdenum-based powders are often alloyed with other elements like tungsten, nickel, and chromium, further enhancing their mechanical and chemical properties.

In this article, we’ll explore the types, composition, properties, applications, and pricing of molybdenum-based powder. Let’s dive into what makes this material indispensable in industries ranging from aerospace to electronics.

อ่านเพิ่มเติม & gt;

เกี่ยวกับ met3dp

Play Video

อัปเดตล่าสุด

ผลิตภัณฑ์ของเรา

ติดต่อเรา

มีคำถามอะไรไหม? ส่งข้อความถึงเราตอนนี้! เราจะให้บริการคำขอของคุณกับทีมงานทั้งหมดหลังจากได้รับข้อความของคุณ 

รับ Metal3DP's
โบรชัวร์ผลิตภัณฑ์

รับเทคโนโลยีล่าสุดนวัตกรรมและข่าวของ บริษัท ที่ส่งมอบ