MIM-Metallpulver verstehen

Inhaltsübersicht

MIM Metal Powder (MIM) is an efficient manufacturing process that combines the design flexibility of plastic injection molding with the strength and properties of machined metal parts. The key material for MIM is metal powder, specifically tailored for this process. This guide provides a comprehensive overview of MIM metal powder including composition, production, properties, applications, and more.

Überblick über MIM Metal Powder

MIM metal powder refers to fine metal powders used as feedstock for the metal injection molding process. It is a mixture of fine metal powder and binder that is injected into molds to form complex, net-shape green parts.

Key features of MIM powder include:

  • Ultrafine spherical powder 10-20 microns in size
  • Powder loading of 55-65% by volume in binder
  • Excellent flowability for mold filling
  • Konsistente Partikelgrößenverteilung
  • Alloy compositions optimized for MIM
  • Wide range of material options like steels, stainless steels, titanium alloys, tungsten heavy alloys, etc.
  • Cost-effective production of complex, tight tolerance metal components

The global MIM powder market was over $350 million in 2020. The industry is projected to grow steadily at over 8% CAGR driven by demand across diverse sectors.

Types of MIM Metal Powder

Various metal powder compositions are used for MIM feedstock. The most common types include:

MaterialWichtige EigenschaftenAnwendungen
Rostfreie StähleKorrosionsbeständigkeit, FestigkeitMedical, automotive, consumer products
WerkzeugstähleHohe Härte, VerschleißfestigkeitCutting tools, dies, gears
Low alloy steelsMagnetic properties, machinabilityElectromechanical components
Titan-LegierungenHohes Verhältnis von Festigkeit zu GewichtAerospace, military, biomedical
Schwere WolframlegierungenDensity, vibration dampingAutomotive, sports equipment
SuperlegierungenHohe TemperaturbeständigkeitTurbine and rocket components

By selecting appropriate powder metal alloys, components can be fabricated with properties tailored for specific applications.

mim Metallpulver

Production of MIM Metal Powder

Several methods are used commercially to produce fine metal powders for MIM feedstock:

Gaszerstäubung – High velocity inert gas jets break up a thin stream of molten metal into fine droplets that solidify into spherical powders ideal for MIM. Common for steels, superalloys, and non-ferrous alloys.

Wasserzerstäubung – Similar to gas atomization but lower cooling rate produces more irregular powder shapes suitable for some applications. Lower cost process used for common alloys like iron, copper.

Plasma-Zerstäubung – Extremely high temperature plasma arc used to generate finer spherical powders from reactive alloys like titanium, niobium, and tantalum.

Mechanische Attrition – Ball milling is used to reduce the particle sizes of metal powder blends to the MIM range. Efficient dry process.

Carbonyl-Verfahren – Iron and nickel carbonyls are decomposed to produce high purity spherical powders of 1-5 microns particle size.

The powder making method controls final powder characteristics like flowability, tap density, and impurities.

Eigentum von MIM Metal Powder

Key properties of MIM feedstock powder include:

Partikelgröße – Between 1 to 20 microns, typically around 10 microns for optimal filling. High yields in this range.

Partikelform – Predominantly spherical morphology allows smooth flow into complex molds. Some irregularity acceptable.

Partikelgrößenverteilung – Narrow distribution improves uniform sintering. Generally 80-90% of particles within 10 +/- 5 microns range.

Dichte des Gewindebohrers – Indicates final part density. Higher tap density above 3 g/cc needed for high mechanical properties.

Durchflussmenge – Measured in seconds/50g. Critical for smooth mold filling without gaps. Below 40 s/50g desirable.

Scheinbare Dichte – In feedstock, typically 40-50% of final sintered density indicating powder loading fraction.

Pycnometric density – Actual density of the solid alloy particles. Matching with final part density indicates purity.

Spezifische Oberfläche – High values indicate finer particle size distribution desirable for MIM. Ranges from 0.1 to 1 m2/g.

Alloy Options for MIM Metal Powder

A wide range of alloys are available as MIM powder feedstock, including:

LegierungZusammensetzungEigenschaftenAnwendungen
Rostfreier Stahl 316LCr, Ni, MoAusgezeichnete KorrosionsbeständigkeitMedical, food contact
Rostfreier Stahl 17-4PHCr, Ni, CuHigh strength, hardnessKomponenten für die Luft- und Raumfahrt
Tool steel H13Cr, Mo, VHot hardness, thermal fatigue resistanceSpritzgießen
Maraging steelNi, Co, Mo, TiUltrahigh strengthAerospace, tooling
Alloy steelCr, Mo, CHeat treatable, magneticStrukturteile
Nickel alloy 718Ni, Fe, Nb, MoHohe TemperaturbeständigkeitLuft- und Raumfahrt
Titan Ti-6Al-4VTi, Al, VLightweight, biocompatibilityMedizinische Implantate
Tungsten heavy alloyW, Ni, FeHigh density, radiation shieldingMilitary, motorsports

With a broad range of alloys available, MIM provides flexibility in achieving required material properties and performance.

Applications of MIM Metal Powder

The major application areas using MIM technology and feedstock powder include:

Medical and Dental Implants

MIM is ideal for high volume production of small, complex stainless steel and titanium implant components like joints, fixation screws, instruments. Offers biocompatibility, corrosion resistance, strength, and manufacturing precision.

Automotive Components

Small precision parts like turbocharger rotors, injector nozzles, valve locking caps made by MIM provide performance benefits in modern engines and powertrains.

Consumer Electronics

Miniature components like watch gears, decorative fittings, connector pins etc. are manufactured via MIM from stainless steels, copper alloys and tool steels.

Luft- und Raumfahrt und Verteidigung

Lightweight, high strength Ti and Ni alloys MIM components reduce weight in turbines and airframes. Tungsten alloys offer radiation shielding for space and defense uses.

Feuerarme

Small, complex firearm components like triggers, hammers, safeties, ejectors can be MIM fabricated in high volumes from stainless steels and tool steel alloys.

Watch Industry

MIM enables economical production of intricately shaped stainless steel watch cases, bracelets, buckles and miniature moving components like gears and springs.

With its design flexibility, MIM continues finding applications across diverse sectors from consumer products to critical industrial components.

How to Choose MIM Metal Powder

Key considerations when selecting MIM feedstock powder:

  • Zusammensetzung der Legierung – Match powder alloy to end application requirements like corrosion resistance, strength, wear properties etc.
  • Größe und Form der Partikel – Prefer spherical morphology with narrow distribution around 10 microns for optimal flow and packing.
  • Powder purity – High purity above 99% needed for specialized applications like medical to avoid contamination.
  • Dichte des Gewindebohrers – Higher density above 3 g/cc improves mold filling and final part density after sintering.
  • Pulverbeschickung – Binder content between 30-50 vol% is typical. Affects viscosity and molded green strength.
  • Powder producer – Reputable powder makers like Sandvik, BASF, and Kymera with validated processes.
  • Lot-to-lot consistency – Consistent feedstock properties allow stable molding parameters over long production runs.
  • Technische Unterstützung – Detailed application data and assistance from the powder supplier during development trials.

Leading global suppliers include Sandvik Osprey, BASF Ultraform, Kymera International, and Epson Atmix who collaborate with end-users during part and process development for optimum results.

Comparison Between Atomized and milled MIM Powders

ParameterAtomized PowdersMechanically Milled Powders
PartikelformSphärischUnregelmäßig, eckig
Größenbereich1 – 20 microns10 – 100+ microns
GrößenverteilungVery narrowBroad
Dichte des GewindebohrersHigher ~3-4 g/ccLower ~2-3 g/cc
DurchflussmengeAusgezeichnetMäßig
ReinheitHochUnter
KostenHöherUnter
Alloys availableMost standard and specialty alloysBegrenzte Legierungen
AnwendungenMost MIM componentsLarger, less critical MIM parts

Atomized powders allow more complex, higher performance MIM components. Milled powders offer a cost saving option for some applications.

Installation of a MIM Powder Production Plant

Key steps in installing a MIM powder production plant:

  • Site selection – Adequate space, utilities supply, waste handling, access roads and loading bays.
  • Building and layout – Design plant layout for material and people flow, safety, production zones, future expansion.
  • Utility connections – High capacity electrical supply, purified water, compressed air lines, liquid nitrogen.
  • Machinery foundations – Strong reinforced concrete foundations for atomizers, mills, furnaces. Vibration dampening.
  • Equipment installation – Set up glove boxes, atomizers, sieves, conveyors, hoppers, controls per supplier instructions.
  • Auxiliary systems – Piping, ventilation, air filtration, fire safety, material handling, waste water treatment.
  • Kontroll systeme – Install sensors, actuators, HMIs. Integrate and program process control systems.
  • Inbetriebnahme – Test production runs to verify powder quality, safety, environmental compliance before full scale production.

MIM powder plant installation requires extensive planning and attention to utilities, controls, safety, and regulatory needs.

Operation and Maintenance of MIM Powder Equipment

Reliable operation of MIM powder manufacturing equipment requires:

  • Preventive maintenance – Schedule periodic maintenance of atomizers, furnaces, mills, conveyors as per OEM recommendations .
  • Equipment monitoring – Continuous monitoring of process parameters like flow, pressure, temperature, power consumption.
  • Inspektionen – Daily visual inspections for leaks, abnormal noises or vibration, safety issues.
  • Services and repairs – Schedule annual service contracts for nitrogen generators, chiller units, electrical systems.
  • Spare parts – Keep stock of common spares like heating elements, motors, bearings to minimize downtime.
  • Equipment logs – Maintain logs for production rate, repairs, breakdowns to optimize asset utilization.
  • Hauswirtschaft – Daily cleaning to maintain clean, orderly equipment and avoid any ignition risks in powder handling areas.
  • Staff training – Conduct hands-on equipment training to improve operational efficiency and troubleshooting skills.

With excellent maintenance practices, MIM powder making equipment can deliver years of safe, reliable production.

How to Select a MIM Powder Supplier

Key factors when selecting a MIM powder supplier:

  • Technisches Fachwissen in powders – Experience optimizing powder characteristics and binder formulation for MIM.
  • Range of alloys – Availability of wide variety of alloys from stainless steels to titanium, tool steels etc.
  • Qualitätssysteme – ISO 9001 certification. Internal quality control of powder characteristics.
  • Konsistenz – Powder properties remain consistent batch-to-batch allowing stable molding process.
  • F&E-Kompetenz – Continuous research to develop new tailored alloys and binders for demanding applications.
  • Kundenbetreuung – Responsive technical and sales support. On-site assistance during trials and ramp-up.
  • Logistics capability – Systems to ensure efficient, on-time powder deliveries across regions.

Leading global suppliers include Sandvik Osprey, BASF, Kymera International, and Epson Atmix who are highly focused on MIM powder technology.

Pros and Cons of MIM Powder

Profis

  • Complex, net shape parts in high volumes at low costs
  • Wide range of alloys available including difficult to machine metals
  • Good mechanical properties close to wrought materials
  • High accuracy and repeatability
  • Minimal scrap losses compared to machining
  • Limited finishing required on sintered parts
  • Environmentally cleaner process with less waste than machining

Nachteile

  • Higher part cost for lower production volumes
  • Size limited to smaller components, typically below 500 g
  • Restricted to alloys available as MIM powder blends
  • Sintered parts have lower ductility than wrought metals
  • Specialized equipment and expertise needed
  • Additional debinding and sintering steps

MIM Powder vs. Metal Powders for Other Applications

ParameterMIM-PulverAdditives FertigungspulverPress and Sinter Powder
LegierungenWide range of stainless, tool steels, Ti alloysLimited alloys like 17-4PH, Ti-6Al-4V, CoCrLow alloy and stainless steels
PartikelformÜberwiegend kugelförmigHochgradig kugelförmigIrregular acceptable
Größenbereich1-20 microns15-45 MikrometerUp to 150 microns
GrößenverteilungVery narrowNarrowWider acceptable
ReinheitMittel bis hochHochMittel
KostenMittelHochNiedrig
Typical production methodGas or water atomizationGas or plasma atomizationWater atomization, mechanical milling
mim Metallpulver

FAQ

Q: What is the typical size distribution of MIM powder?

A: Around 80-90% of MIM powder particles fall within 10 +/- 5 microns for optimal packing density and flow.

Q: What factors affect powder loading in the binder?

A: Key factors controlling powder loading % are particle size distribution, shape, tap density, and powder-binder interaction.

Q: How is high temperature strength of MIM parts compared to wrought alloys?

A: With optimal sintering, MIM parts in alloys like stainless steel 316L and 17-4PH achieve over 90% of wrought strength.

Q: What causes incomplete mold filling defects in MIM?

A: Improper powder loading, wide particle distribution, poor powder flowability, and low injection velocity can cause filling defects.

Q: How does MIM compare to plastic injection molding in terms of molding pressures?

A: MIM injection pressures range from 70-140 MPa, higher than typical plastic molding pressures of 15-60 MPa.

Q: What safety precautions are required when handling MIM powders?

A: MIM powders can be flammable. Use inert gas glove boxes, avoid spark sources, ground equipment, and use dust extraction.

Schlussfolgerung

MIM continues to grow in prominence as a near net shape technology to manufacture high performance, complex metal components at low cost and high volumes. MIM powders are critical raw materials formulated specifically for this process by advanced powder metallurgy techniques. With expanded alloys and improved powders, MIM adoption will continue rising across industries to replace machined and cast components with improved cost and lead time.

mehr über 3D-Druckverfahren erfahren

Teilen auf

Facebook
Twitter
LinkedIn
WhatsApp
E-Mail

Metal3DP Technology Co., LTD ist ein führender Anbieter von additiven Fertigungslösungen mit Hauptsitz in Qingdao, China. Unser Unternehmen ist spezialisiert auf 3D-Druckgeräte und Hochleistungsmetallpulver für industrielle Anwendungen.

Fragen Sie an, um den besten Preis und eine maßgeschneiderte Lösung für Ihr Unternehmen zu erhalten!

Verwandte Artikel

Metallpulver-Gaszerstäubungsanlage

Übersicht Die Metallpulver-Gaszerstäubungsanlage ist ein industrielles System zur Herstellung von feinen, kugelförmigen Metallpulvern durch Zerkleinerung eines geschmolzenen Metallstroms unter hohem Druck.

Mehr lesen >

Metallpulver-Wasserzerstäubungsanlage

Überblick Die Wasserzerstäubung von Metallpulvern ist ein beliebtes Verfahren in der Fertigungsindustrie zur Herstellung hochwertiger Metallpulver für verschiedene Anwendungen, einschließlich der additiven Fertigung

Mehr lesen >

Holen Sie sich Metal3DP's
Produkt-Broschüre

Lassen Sie sich die neuesten Technologien, Innovationen und Unternehmensnachrichten zusenden.